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Abstract
The theory of free-carrier absorption is given for a quasi-one-dimensional
semiconducting structure in a quantizing magnetic field for the case where
the carriers are scattered by polar optical phonons and acoustic phonons and
the radiation field is polarized perpendicular to the magnetic field direction.
The usual resonance condition Pωc = � + ω0, where P is an integer and ω0

and ωc are the optical-phonon frequency and cyclotron frequency, respectively,
becomes Pω̃ = � ± ω0, with ω̃ equal to

√
ω2

c + ω2. The magnetic field
dependence of the absorption for the transverse configuration can be explained
in terms of a phonon-assisted transition between the various Landau levels of
the carriers.

1. Introduction

The application of a magnetic field to a crystal changes the dimensionality of the electronic
levels and leads to a redistribution of the density of states. Quantum well wires (QWW) in
a magnetic field have been the subject of several investigations [1–5]. In [1] rectangular
QWWs were treated in the decoupled approximation. Concerning theoretical work on
magnetotransport in QWWs, we are aware of the Hall resistivity treatments of [2, 3] and of
magnetophonon oscillations in [4]. In [5] the field-induced change in optical anisotropy was
studied for a quasi-two-dimensional (Q2D) system subject to a periodic modulation. The effect
of a magnetic field on conductance quantization in quasi-one-dimensional (Q1D) systems is
reviewed in [6]. Progress in the techniques of growth on patterned substrates and of cleaved-
edge overgrowth has led to QWWs with very good optical properties [7–10], thus renewing
the interest for the basic properties of Q1D systems.

In this work we are interested in the effect of a magnetic field on the free carrier absorption
(FCA) in semiconductor QWWs. Over the past two decades the investigation of FCA in low-
dimensional systems has been very intense. Scattering-assisted absorption by free electrons
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and holes in the active quantum wells (QWs) then usually determines the internal loss in
optically pumped laser devices with undoped cladding. Even in electrically pumped devices,
assisted FCA can dominate if the lasing mode is optically confined primarily to the active
region, as in interband cascade lasers [11]. FCA in diode optical cladding layers consisting
of superlattice injectors [12] can also be significant. FCA is one of the powerful means to
understand the scattering mechanisms of carriers. In bulk semiconductors it accounts for the
absorption of electromagnetic radiation of frequencies � such that h̄� < Eg, where Eg is
the band gap [13]. In QW structures, apart from the direct interband and intersubband optical
transitions, optical absorption can also take place via indirect intrassubband optical transitions
in which carriers absorb or emit a photon with a simultaneous scattering from phonons or
other imperfections. The quantum theory for FCA in Q2D structures is well developed both
in the absence [14–24] and in the presence of quantizing magnetic fields [25]. In previous
work [25] we have extended the theory of FCA in Q2D systems in the presence of a quantizing
magnetic field when phonon scattering is important, and it was found that the FCA coefficient
oscillates as a function of the magnetic field and photon frequency with resonances occurring
when Pωc = � ± ω0, where ωc,� and ω0 are the cyclotron, photon and phonon frequency,
respectively, and where P is an integer.

The optical properties of quantum wires are well understood theoretically [26–29].
Forshaw and Whittaker [26] have presented a method to calculate accurately excitonic spectra
in QWWs, and have described the transition of an exciton confinement in two directions to
confinement in just one dimension. Intraband [27] and interband [28] optical absorption in
Q1D systems in magnetic fields has been studied. Glutsch and Chemla [29] have calculated the
optical absorption of QWWs for a large variety of wire widths, taking into account Coulomb
interaction, unequal electron and hole effective masses, and continuum states. The theory
of FCA has been studied theoretically in Q1D structures only in the absence of a quantizing
magnetic field [30–32].

Experimental work has been done on magneto-transport [33] and magneto-optical
absorption [34–36] in QWWs. In the magneto-photoluminescence and magneto-absorption
experiments [34], characteristic features of low-dimensional excitons in high magnetic
fields were observed. Far-infrared spectroscopy [35] on quantum structures with tailored
nonparabolic potential give a detailed insight into complex many-body effects of quantum
wires. Photoluminescence and photoluminescence excitation spectroscopy [36] have been
performed at liquid helium temperatures in external magnetic fields up to 7.5 T. In the cyclotron
resonance experiments [34] with the magnetic field tilted away from the growth direction, new
features originating from the subband-Landau-level coupling were found.

In this paper we extend the quantum theory of the FCA developed previously, to take into
account the presence of quantizing magnetic fields. We consider the FCA for the case where
the carriers are scattered by acoustic and polar optic phonons. We will present a calculation
of the FCA coefficient for electromagnetic radiation polarized along the length of the wire.
The magnetic field is assumed to be perpendicular to the wire axis, so that the dispersion of
one-dimensional subbands is strongly modified.

2. Formalism

We consider a Q1D electron gas confined in a wire of dimensions Lx , L y, Lz . We model
transverse confinement via an infinite square well approximation to a heterojunction QW
(z axis) and a parabolic potential of frequency ω (x axis). Moreover, a magnetic field B ,
parallel to the z axis, is applied to the wire. The electrons are free in the direction of the
wire (y axis). Correspondingly, the one-electron eigenfunctions �Nlky and energy eigenvalues
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ENlky are given by

�Nlky =
(

2

L y Lz

)1/2

�N (x − x0)eiky y sin

(
lπz

Lz

)
(1)

ENlky =
(

N +
1

2

)
h̄ω̃c +

h̄2k2
y

2m̃∗ + l2 E0 (2)

where N = 0, 1, 2, . . ., l = 1, 2, 3, . . ., E0 = π2h̄2/2m∗L2
z , ky is the wavevector in the y

direction, m∗ is the effective mass of the electron, ωc = eH/m∗c is the cyclotron frequency,
ω̃ = √

ω2
c + ω2, and m̃ = m∗ω̃2/ω2. Moreover, �N (x − x0) is the well-known harmonic-

oscillator wavefunction centred at x0 = b̃ R̃2ky with b̃ = ωc/ω̃ and R̃2 = h̄/m∗ω̃.
The FCA coefficient α, which is related to the quantum-mechanical transition probabilities

in which the carriers absorb or emit a photon with the simultaneous scattering of the carriers
from phonons, is given by [37]

α = ε1/2

n0c

∑
i

Wi fi. (3)

Here ε is the dielectric constant of material, n0 is the number of photons in the radiation field
and fi is the free-carrier distribution function. The sum is over all the possible initial states ‘i’
of the system. The transition probabilities Wi can be calculated using the standard second-order
Born golden rule approximation:

Wi = 2π

h̄

∑
f q

[|〈f |M+|i〉|2δ(Ef − Ei − h̄� − h̄ωq)

+ |〈f |M−|i〉|2δ(Ef − Ei − h̄� + h̄ωq)]. (4)

Here Ei and Ef are the initial and final state energies, respectively, of electrons, h̄� is the
photon energy, h̄ωq is the phonon energy, and 〈f |M±|i〉 are the transition matrix elements from
the initial state to the final state for the interaction between electrons, photons and phonons.

The transition matrix elements can be represented by

〈f |M±|i〉 =
∑

α

( 〈f |HR|α〉〈α|Vs|i〉
Ei − Eα ∓ h̄ωq

+
〈f |Vs|α〉〈α|HR|i〉
Ei − Eα − h̄�

)
(5)

where HR is the interaction Hamiltonian between the electrons and the radiation field, and Vs

is the scattering potential due to the electron–phonon interaction.
Using the wavefunctions given by expression (1), the matrix elements of the electron–

photon interaction Hamiltonians can be written as

〈k ′
y N ′l ′|HR|ky Nl〉 = − eh̄

m∗

(
2π h̄n0

V �ε

)1/2

(εκ)δκyκ ′
y
δN N ′δll′ (6)

where V is the volume of the crystal. Here the radiation field is polarized along the wire, and
ε is the polarization vector of the radiation field.

We shall use two different scattering processes: polar-optical scattering and acoustic-
phonon scattering. The matrix elements 〈k ′

y N ′l ′|Vs|ky Nl〉 of the electron–phonon interaction
corresponding to the above two processes are equal to

〈k ′
y N ′l|Vs|ky Nl〉 = C ′

jδk′
y ,ky ±qy JN N ′(qxqy)�ll′ (qz) (7)

where JN ′,N (qx,qy) is the overlap integral of the harmonic wavefunctions:

JN ′,N (qx, qy) =
∫ ∞

−∞
dx exp(iqx x)�N ′(x − b̃ R̃2ky − b̃ R̃2qy)�N (x − b̃ R̃2ky) (8)
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�ll′ (qz) = 2

Lz

∫ Lz

0
dz exp(iqzz) sin

(
l ′πz

Lz

)
sin

(
lπz

Lz

)

C ′2
j = C2

j Fj (q).

(9)

The function �ll ′(qz) given by equation (8) is crucial for our calculation; a suitable
approximation is discussed by Ridley [38].

For the electron–polar-optic phonon interaction we have

C2
POL = 2πe2h̄ω0ε

′−1
, FPOL = N±

0

q2V
, ε ′−1 =

{
1

ε∞
− 1

ε0

}
.

Here, ε∞ and ε0 are the high-frequency and static dielectric constants of the semiconductor,
respectively. As usual, we take the phonon energy h̄ωq = h̄ω0 ≈ constant.

N0 =
[

exp

(
h̄ω0

kBT

)
− 1

]−1

, N−
0 = N0, N+

0 = N0 + 1,

where N−
0 (N+

0 ) describes the annihilation (creation) of the phonon.
When acoustic phonon scattering is dominant, one may obtain

C2
AC = E2

dkBT

2ρυ2
s V

, FAC(q) = 1.

In the case of bulk materials and at extremely strong magnetic fields, the electronic
wavefunctions have small absolute values of momentum components parallel to the applied
magnetic field. Therefore we can neglect the qz-dependence in the interaction potential given
by C ′

j .
The electron distribution function for a Q1D nondegenerate electron gas in the presence

of a magnetic field can be shown to be

fNlky = 2(2π)1/2h̄ne Lx Lz sinh(h̄ω̃/2kBT )

δ(m̃kBT )1/2
exp

{
−

[
(N + 1/2)h̄ω̃ + l2 E0

kBT

]}

× exp

(
− h̄2k2

y

2m̃∗kBT

)
(10)

where δ = ∑
l exp(l2 E0/kBT ), and ne is the concentration of the electrons.

Below, we will use the following identities:∫ ∞

0
|JN N ′(qx, qy)|2q⊥ dq⊥ = 1

R2∫ ∞

0
|JN N ′(qx, qy)|2q3

⊥ dq⊥ = 2

R4
(N ′ + N + 1)

∫ ∞

0
|�ll′ (qz)|2 dqz = 2π

d

(
1 +

1

2
δll′

)
.

(11)

Now we make the same approximation as in [4], i.e. we take h̄2/(2m̃∗)(q2
y − 2kyqy) = 0,

in δ functions. Using equations (4)–(6) and (9) in (3) and also identities (11), we obtain the
following expression for the FCA coefficient for polar and acoustic phonon scattering in a
Q1D semiconducting structure in the presence of a magnetic field:

αPOL(H ) = 4π2e4h̄ω0ne sinh(h̄ω̃/2kBT )

cε1/2ε ′m∗2�3 Lzb̃R2δ

∑
Nf lf

∑
Nili

(
1 +

δlf li

2

)

× exp

{
− 1

kBT

[(
Ni +

1

2

)
h̄ω̃ + l2

i E0

]}
× {N0δ((Nf − Ni)h̄ω̃
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+ (l2
f − l2

i )E0 − h̄� + h̄ω0) + (N0 + 1)δ((Nf − Ni)h̄ω̃

+ (l2
f − l2

i )E0 − h̄� − h̄ω0)} (12)

αAC(H ) = 2πe2 E2
d ne(kBT ) sinh(h̄ω̃/2kBT )

cρε1/2υ2
s m∗2�3Lzb̃2 R4δ

∑
Nf lf

∑
Nili

(
1 +

δlf li

2

)
(Nf + Ni + 1)

× exp

{
− 1

kBT

[(
Ni +

1

2

)
h̄ω̃ + l2

i E0

]}

× {δ((Nf − Ni)h̄ω̃ + (l2
f − l2

i )E0 − h̄�)}. (13)

As can be seen from equations (12) and (13) the FCA coefficient diverges under resonance
conditions in a quantizing magnetic field through the δ function. These divergences are
associated with the quantization of the electron energy spectrum in the presence of a magnetic
field and the confining frequency. This may be removed by replacement of the δ functions by
the Lorentzian δτ (x) = (πτ)−1/(τ−2 + x2). In this case α(ω) has δ-function-like spikes with
a halfwidth equal to τ−1, whereτ is the phenomenological relaxation time.

It is particularly convenient to express our results in terms of the dimensionless ratio of
the FCA coefficient in the presence of the magnetic field to that in the absence of the field. For
scattering through acoustic phonons, we adopt the results [30]

αAC(0) = 23/2e2 E2
d(kBT )3/2ne sinh(h̄ω/2kBT )

m∗1/2lω(h̄�)3ε1/2ρυ2
s cLzδ

×
∑
nf lf

∑
nili

(
1 +

1

2
δlilf

)
exp

(
− (ni + 1/2)h̄ω + l2 E0

kBT

)
Z exp(Z)K1(Z) (14)

where

Z = h̄� − (nf − ni)h̄ω − (l2
f − l2

i )E0

2kBT
,

K1(x) is the modified Bessel function of the second kind, and l2
ω = h̄/m∗ω. In the quantum

limit, in which only the ni = nf = li = lf = 1 quantum level is occupied and h̄ωc 	 kBT ,
only the lowest Landau level N = 0 is thermally populated; the ratio αAC(H )/αAC(0) and
αPOL(H )/αPOL(0) are functions of ω̃T,�. It can be seen that the ratio depends only upon the
magnetic field, absolute temperature, and photon frequency and does not depend upon such
material parameters as the values of the deformation potential, sound velocity, or density of the
material, although, of course, the absolute value of absorption coefficient does depend upon
the numerical values of these parameters.

3. Discussion

Thus, we have obtained general expressions for FCA coefficients for QWWs in the presence
of the quantizing magnetic field. From equations (12) and (13) it can be seen that, in the
extreme quantum limit (h̄ω̃ 	 kBT , Ni = 0, li = lf = 1) for polar optical phonons, the FCA
coefficient oscillates as a function of the magnetic field and photon frequency with resonances
occurring when Pω̃ = � ± ω0. Since ωc < ω̃, for ω > 0, the resonances are shifted
to smaller magnetic fields. The above conditions give the resonance magnetic fields H as
H = √

(� ± ω0)2(m∗c/e)2 − (cm∗ω/e)2/P . For ω = 0, i.e., in the absence of confinement,
b̃2 = 1, ω̃ = ωc, and we recover the usual resonance condition Pωc = � ± ω0. For elastic
scattering by acoustic phonons, resonances are expected when Pω̃ = �0.

We will consider that Lz is so small that no transitions between levels l can take place
due to thermal excitations or phonons. For GaAs, E0 is about 0.05 eV for d = 100 Å, and
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Figure 1. (a) For h̄ω = 0.004 eV, we present the variation of the FCA coefficient αPOL as a function
of the magnetic field at h̄� = 0.1 eV; (b) for h̄ω = 0.008 eV, we plot the absorption coefficient
αPOL as a function of the magnetic field at h̄� = 0.1 eV.
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Figure 2. The ratio of the FCA coefficient in the presence of a magnetic field to its zero-field value
is shown as a function of photon frequency for acoustic phonons.

h̄ωc = 1.7H (meV), with H measured in tesla units. That is, we consider that all the carriers
are in the lowest subband li = lf = 1. We have evaluated the FCA coefficients numerically, in
the extreme quantum limit, for GaAs. The parameters used in our calculation are τ = 10−12 s,
T = 100 K, m∗ = 0.07m0, h̄ω0 = 0.036 eV.

In figure 1(a), for h̄ω = 0.004 eV, we present the variation of the FCA coefficient αPOL

as a function of the magnetic field at h̄� = 0.1 eV. The resonances in α versus H are noted.
It is shown that the amplitude of the oscillation increases with the magnetic field. Since we
introduced a broadening to the δ function, the divergence at the resonance is removed. The
oscillatory dependence of the absorption on the magnetic field can be understood in terms of
the Landau subband structure of the electronic energy levels in quantizing magnetic fields. As
the magnetic field, and therefore ω̃, increases there are fewer and fewer subbands to which
the transition can occur. Every time that the ratio (� ± ω0)/ω̃ equals an integer value, the
transition can take place with an additional subband ending as a final state.

In figure 1(b), for h̄ω = 0.008 eV, we plot the absorption coefficient αPOL as a function of
the magnetic field at h̄� = 0.1 eV. By comparing figures 1(a) with (b) we see that the effect
of confinement in the x direction for the Q1D quantum wire structure is to shift the ordinary
resonance peak position to lower magnetic field.
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The ratio of the FCA coefficient in the presence of a magnetic field to its zero-field value
is shown as a function of photon frequency, at H = 5 T, for acoustic phonons in figure 2. As
with the magnetic field dependence, the resonances in α versus h̄� are noted.

In conclusion, we predict that the FCA coefficient should increase with magnetic field
with an oscillatory dependence on the field when � > ω̃. The magnetic field dependence of
the FCA coefficient is explained in terms of the field dependence of the scattering rates and
the possibility of phonon-assisted transitions between various Landau levels when � > ω̃.
The effect of confinement in the x direction for the Q1D quantum wire structure is to shift the
ordinary resonance peak position to lower magnetic field.
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